MPM-Geomechanics Manual

An open-source Material Point Method code for geomechanics.

Prof. Dr. Fabricio Fernandez
MPM-Geomechanics Development Team

December 30, 2025

1 Introduction to the Material Point Method (MPM)

The Material Point Method is an hybrid Lagrangian-Eulerian numerical method, that allows
for simulating continuum mechanics processes involving large deformations and displacements
without issues related to computational mesh distortion. In MPM, the material domain to be
simulated is discretized into a set of material points that can move freely within a computational
mesh, where the equations of motion are solved. The material points store all variables of interest
during the simulation, such as stress, pore pressure, temperature, etc., giving the method its
Lagrangian characteristic.

4 v v
Q Material domain
[. -0 -_'_ Material points
. ° ™
W .
] e ®
[® ¥ [] Grid node
L
I Computational Mesh
D <Y
& Q Q

Figure 1: General MPM approach. Solid and space discretization with Lagrangian material
points and structured Eulerian mesh.

In an MPM computational cycle, all variables stored in the material points are computed at
the computational mesh nodes using interpolation functions, and then the equation of motion is
solved at the nodes. The nodal solution obtained is interpolated back to the particles, whose
positions are updated, and all nodal variables are discarded. This method, enables the numerical
solution of the motion equation in continuum mechanics by using the nodes of an Eulerian mesh
for integration and Lagrangian material points to transfer and store the properties of the medium.

) Map values from b) Solve the motion
material points to grid nodes equation at the nodes

- " ®
B 3t
= " T -~ = —
. = . -
NNN
C) update material point position A) o erpolate oo s
] L b
) NN N
- ‘d.\. - \ -
— -—\M- . .TA_\ - -€ .. - =\
N '\:-\T o o
IR XSS .

Figure 2: MPM computational cycle

2 MPM Formulation

The material point method formulation is based on the continuum mechanics motion equation in
3D:

60'1']'
856]'

The internal forces are related with the o;;, the Cauchy stress tensor, p is the mass density,
b; is a body force and a; is the acceleration.

The equation 1 is presented here in tensor notation, but, vector and matrix can be equally
used. The discrete form of the motion equation can be obtained using the weak form of this
partial differential equation. The weak form is obtained by multiplying the motion equation by
arbitrary weighting functions and integrating this product over the domain. In this procedure,
the integration by parts reduces the order the stress tensor and introduces the natural boundary

+ pb; = pa; (1)

conditions:

Q r Q Q

Here du; are arbitrary displacements functions, whose value in the boundary are du;|p =0
and ¢; is an external traction acting on the boundary T'.
In the MPM context any field or space property f(z;) can approximated using the value

stored in the particle f,:
T;) = prXp(fUi)
where x,, is the particle characteristic function that defines the volume occupied by the material

point:
P 0n0 Xp()

In consequent, density, acceleration and stress fields can be approximated by the values stored
in particles:

m Di
p(z;) = Z prXp(xi)P(xi)ai(xi) = Z vap(xz oij (%:) ZJZJPXP ;)
p P p

where p;, =m0, = mpasip = fip is the momentum variation in time that is equal to the
total force, regarding the second Newton’s law.
Replacing these fields in the weak form of the motion equation we have:

—Z/ a,]pxpéu”dv—i—/t 6uZdA+Z/ szpéude Z/ - V XpaidV

In the generalized interpolation material point method (GIMP), the resolution of this equation
is carried out using a Petrov-Galerkin scheme where the characteristic functions x,(z;) are the
trial functions and the nodal interpolation functions Ny(z;) are the test functions.To arrive at
this scheme, the virtual displacements are expressed using nodal interpolation functions:

5ui = Z ijéuu
I
The trial and test functions are such that:
D Ni(zi) =1) xp(wi) =1
I P
The resulting discrete form of the motion equation then is:

znt 4 fext _ pil

where

Dir = Z S1pPrp
p

is the nodal momentum,

mt
Z TijpSip, Vp

is the nodal internal force, and
et Zmpslpbzp + / £:N7 () dA

is the external force at node I.

The function Sy, and its gradients Sy, ; are the weighting functions of node I evaluated at
the position of particle p.

The GIMP shape functions are defined by

Srp = ép 0,00 Xp(@i) Ny (23)dV
and
Stpj = Vi Xp(2i) N1 j(2i)dV
» J,n0

These two functions are also a partition of the unity) ; Sy, = 1.

The weighting function need to be integrated over the particle domain by choosing different
characteristic functions and interpolation functions in a Petrov—Galerkin scheme. In the con-
tiguous particle GIMP (cpGIMP) the characteristic function in defined as step function and the
interpolation function is defined as linear function:

1, x€Q,,
Xp(x):{ ?

0, x¢Q,.
0, |x —x7| > L,
T —
NI([I;): 1+ 7 —L<x—2a7 <0,
1_.%'—.73[O<z—xzy<L.

L Y
Where the integration is performed analytically within the particle domain.

0 €l > L+1,
(L+1,+¢&?/ALl, —L—1,<&<—-L+1,
1+¢/L ~LA41, << 1,
Smp=19 1_ (&2+2) /2L, —l,<€<1,
1-¢/L I, <¢<L—1,
(L+1,—&)*/4Ll, L—1,<&<L+1,
and
0 |z, —xr| = L+ 1,
7”“;&:_“) —L—1l,<zp—xr < —L+1,
VSIp = %acp—zl i lp = S s _lp’
o, —lp < xp — 21 <,
—%H e I, <xp—x7 <L—1p,
—% L—1l,<x,—x; <L+

In which 2Ip is the particle domain, L is the mesh size in 1D, and £ is the relative particle
position to node. Weighting functions in 3D are obtained by the product of three one-dimensional
weighting functions:

Stp(wip) = Srp(€)S1p(1)S1p(C)

where { = xp, —x7,n =y, —yr and (= 2, — 271.

3 Explicit MPM integration

The discrete form of the motion equation needs to be integrated in time for obtaining the solution
in time t"*1. The displacement, the velocity and the acceleration at time t° ¢t 2, ..., t" are
knows, and the values at time ¢"*! are required, namely the solution of the problem. The time
integration can be done by explicit and implicit methods. In explicit method, the solution ¢"*+!
is obtained only with the current information f(¢", ...,¢%). In implicit method the solution needs
to solve a system due the solution is in function of the form f(¢"*!, ... 7).

3.1 Central difference Method

In central difference method, the velocity at t"1t1/2 can be approximated as:

,L-Ln+1/2 _ (un+1 o u")At

and, the acceleration in " can be approximated as:

i = (un+1/2 - ’lln_l/2)At

and therefore, the required displacement at "1 can be calculated as: u™! = u™ + " t1/2A¢,
where the velocity is

un+1/2 _ ,L-Ln—l/Q + i AL

The motion equation in time t" is m4"™ = f™, therefore the acceleration in time t" is
@™ = f™/m. Using this acceleration equation in the @"*1/2 we have the velocity @"+1/2:

,L-Ln+1/2 — un71/2 + fn/m At

4 Numerical implementation of central difference method

For one At, the updated position can be obtained as:

Algorithm 1 Explicit time integration

Compute forces f™

Compute acceleration 4" = f™/m
Update velocity ¢"t1/2 = ¢n—1/2 4 g At
Update position v = u™ 4+ a"1/2A¢
n<n+1

5 Stability Requirement

The central difference method is explicit here and conditionally stable, so the time step must be
less that a certain value for avoiding error amplification. For linear systems this critical time step
value depends on the natural period of the system. For undamped linear systems the critical
time step is: At., = T),/m, where T,, is the smallest natural period of the system. For finite
element method, the critical time step of the central difference method can be expressed as:

At = min(I¢/c)

Where [€ is the characteristic length of the element and c¢ is the sound speed. This time step
restriction implies that time step has to be limited such that a disturbance, a mechanical wave,
can travel across the smallest characteristic element length withing a single time step.

This condition is known as CFL condition, or Courant-Friedrichs-Lewy condition. For linear
elastic material the sound speed (compression P wave) is:

_\/ E(1l—v)
TVaTna -2

In the MPM, the particles can has velocities in any time step, so the critical time speed can
be written with this velocity plus:

At = 1 /maxy(cp + |vp|)

In a structured regular mesh, ¢ is the grid cell dimension. And ¢, is the sound speed
calculated with the material parameters stored in particles.

6 Numerical damping

Real materials dissipates energy during movement. Temperature ans plastic deformation are
common sources of energy dissipation. In numerical analysis numerical damping can be used for
obtaining the quasi-static condition of the dynamic system.

7 Local damping

The numerical damping is a technique for getting a stationary solution of the dynamic system.
In the MPM-Geomechanics simulator we have two type of numerical damping: the local (viscous)
and the kinetic (dynamic relaxation) damping.

8 Quasi-static solution with local damping

The local damping is used to get a quasi-static solution of the dynamic system using a viscous
nodal force. In each time step, a viscous force is applied in each node, whose magnitude is
proportional and opposite to the nodal velocity.

dnplocal ~
Fir" " = —al fif" o

, where the unbalanced nodal force is:
unb __ pint ext
i =i + i

Therefore, the resulting discrete form of the motion equation with viscous nodal damping is:

. pint ext dnplocal
pir = fir" + fit "+ fir

9

Explicit algorithm

Algorithm 2 Explicit MPM integration scheme

1:
2:

Compute nodal mass: m’} = Znil mka

Compute nodal momentum: pk 12 _ Z;ha MY ka 1/2 Nlp

3: Update seismic velocities from record (if required):

10:
11:
12:

13:
14:

15:
16:
17:
18:
19:
20:

21:

22:
23:

Svk_% ___s,record
7 L = a; L
v;,k+§ Z;z(l) 2 45 l + as record At
Impose nodal momentum boundary conditions: pk Y2 _ 0 (fixed condition)
Compute internal forces: fmtk ZZ” 1 O'U k gk Ip N
Compute external forces: f**F =377 myb;iSt, + [p tiNi(zi)dA

Compute nodal unbalanced forces: ;}”bk fintk 4 feath

Compute damping forces (if required): f; Inp k= _ql fﬁ”bkwf 1—1/ 2

Compute total nodal forces: figtk = funbk 4 ¢ dnpk

Impose nodal force boundary conditions: fmtk = 0 (fixed condition)
1

k4=
Update nodal momenta: pi;FQ =P
1

. . ket firt
Update particle velocities: v, T2 il > :flk At
I

k—1/2 ftotkAt

p p

o . k+3 s, k+3
Seismic nodal velocity: v,; > =v;," ?
1

k+2 E+1
Contact correction (if required): vy, o g TLC'ontactCorrection(vi;2)

k
Update particle positions: ka = xlp + > l;rQ k At

ip
For MUSL scheme, recalculate nodal momentum: pkH/ 2 Z;p 1 mpvfpﬂ/ 2Nk

k+1/2 _

Impose nodal momentum boundary conditions: p,; 0 (fixed condition)

k+1/2 k+1/2

Calculate nodal velocities: v,; =D, Jmk

Compute particle strain increment: Ae}; k+1/2 (N;c] f 1/2 N;fz ;c+1/2) At
Compute vorticity increment: Awp k+1/2 (Njfj lkH/? N;zlfz f+1/2> At
Update particle density: pi™™ = pk /(14 tr (Asf]pl/2))

Update particle stress: afjkﬂ StressUpdate(o Z’“,Aapk 1/2 Awpk 1/2)
k+—k+1

10 Project data structure

The directories with files and folders in this project are organized as follows:

src/ build/ qa/ external/ and inc/ sources, builds qa(tests and benchmarking), google-
test folder and C++ headers files

e manual/ docs/ program manual and documentation for doxygen
e tests/ simulation results of analytical and numerical tests

o examples/ application examples

11 Build commands

The following instructions outline the steps required to build the MPM-Geomechanics project.

11.1 Instruction commands using Linux/WSL or MSYS2 MINGW64 console
line

After cloning the repository, navigate to the project directory and execute the following commands:

cd build/CMake
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release
cmake --build build -j

11.2 Compilation in Windows

Prior to proceeding with these instructions, please consult the windows required programs section
in this manual.

The simplest way to compile on windows is by using the “bash‘ file at ‘/build/CMake‘ with
‘MSYS2 MINGW64* console line, just execute:

cd project-directory/build/CMake
./ cmake-build.bash

Alternatively, you can use the following commands:

cd project-directory/build/CMake
cmake -G "Unix Makefiles" -B build
cmake --build build

11.3 Compiling on Linux

Prior to proceeding please consult the Linux Required Programs section in this manual.
The simplest way to compile on Linux is by using the “bash‘ file at ‘/build/CMake‘, just
execute:

cd build/CMake
./cmake-build.bash

Alternatively, you can use the following commands:

cd build/CMake
cmake -G "Unix Makefiles" -B build
cmake —--build build

12 Visual Studio Solution

For compiling the code in windows you can use the Visual Studio solution file ‘/build/MPM-
Geomechanics.sln‘, and build it by pressing ‘Ctr+B*. Alternatively you can compile it by using
command in a *Developer Command Prompt*:

msbuild MPM-Geomechanics.sln -p:Configuration=Release

13 Make Compilation

For compile the code in a linux environment, execute the makefile inside the make folder:
MPM-Geomechanics\build\make\makefile.

14 Program features

The MPM-Geomechanics program is an open source implementation of the Material Point
Method (MPM) for geomechanics applications. It is designed to simulate the behavior of soils
and rock under various loading conditions, including static and dynamic loads.

The main features of the program are:

e three dimensional formulation

e dynamic formulation

e shared memory parallelization using OpenMP

o body-based (pre-defined bodies, particles-list)

e constitutive models for soil and rock materials

o softening/hardening models to represent weakness during large deformations
e frictional contact algorithm using STL surfaces

o coupled fluid-mechanical formulation (*under development*)

e seismic boundary conditions

15 Compiled binaries

The recommended way to get the compiled binaries is by downloading the artifacts from the
latest GitHub Actions workflow run.

 go to the [Actions page](https://github.com/fabricix/MPM-Geomechanics/actions).
o elect the latest run of the **MSBuild** workflow for Window, or **CT** for Linux.
 at the bottom, you will find the available artifacts under the **Artifacts** section.

e download the ‘compiled-binaries‘ artifact to get the compiled code.

16 Required Programs

The following instructions outline the steps required to install all necessary programs to build
the MPM-Geomechanics project and execute its test suite.

16.1 Required Programs - Windows

For Windows installation, the required programs can be installed using Winget and MSYS2.
The following table summarizes the required programs, their installation methods, and the

[I N N

Bow N =

w

corresponding commands.

Program Installation Command

Winget Microsoft’s official website Native of Windows

Git via Winget winget install -e -id Git.Git
-e —source winget

MSYS2 via Winget winget install -e -id
MSYS2.MSYS2 -source winget

GitHub CLI | via MSYS2 MINGW64 pacman -S
mingw-w64-x86_64-github-cli

Python via MSYS2 MINGW64 pacman -S
mingw-w64-x86_64-python

CMake via MSYS2 MINGW64 pacman -S
mingw-w64-x86_64-cmake

GCC via MSYS2 MINGW64 pacman -S mingw-w64-x86_64-gcc

G++ via MSYS2 MINGW64 pacman -S mingw-w64-x86_64-gcc

Make via MSYS2 MINGW64 pacman -S make

Table 1: Programs required for Windows installation.

Pre-requisite: Verify Winget installation

Make sure you have Winget installed. You can verify this by running winget -version.
If you don’t have Winget installed, you can get it from Microsoft’s official website.

Step 1: Install Git, GitHub, and MSYS2

Run the following commands:

-e --id Git.Git
-e --id MSYS2.MSYS2

winget install
winget install

-e —--source winget

--source winget

Step 2: Install required packages in MSYS2 MINGW64

pacman -S mingw-w64-x86_64-github-cli
pacman -S mingw-w64-x86_64-python
pacman -S mingw-w64-x86_64 -cmake
pacman -S mingw-w64-x86_64-gcc

pacman -S make

Step 3: Verify the installations

git --version

gh --version
python --version
cmake --version
make --version
gcc —--version
g++ --version

10

https://learn.microsoft.com/en-us/windows/package-manager/winget/
https://learn.microsoft.com/en-us/windows/package-manager/winget/

16.2 Required Programs - Linux

For Linux installation, the required programs can be installed using the apt package manager.
The following table summarizes the required programs, their installation methods, and the
corresponding commands.

Program Installation | Command

Git via apt sudo apt install git

GitHub CLI | via apt sudo apt install gh

Python via apt sudo apt install python3 python3-pip
CMake via apt sudo apt install cmake

GCC via apt sudo apt install build-essential
G++ via apt sudo apt install build-essential
Make via apt sudo apt install build-essential

Table 2: Programs required for Linux installation.

Step 1: Install all packages via apt

Listing 1: Installing required packages using apt

[N

sudo apt install git

sudo apt install gh

sudo apt install python3 python3-pip
sudo apt install cmake

sudo apt install build-essential

Step 2: Verify the installations

B > B | B S N

git --version

gh --version
python3 --version
cmake --version
make --version
gcc —--version

g++ --version

17 Code documentation

Code documentation is generated using Doxygen documentation generator. To generate the
documentation run the following command:

doxygen Doxyfile

The HTML generated documentation is located in ‘/docs/index.html‘

18 Execution

In order to run simulations in several terminal, you can add the compiled code in the system
‘PATH-.
For Windows, you can follow these steps:

e Open the Start Search, type in "env", and select "Edit the system environment variables"

11

e In the System Properties window, click on the "Environment Variables..." button.

e In the Environment Variables window, under the "System variables" section, find and select
the "Path" variable, then click on the "Edit..." button.

¢ In the Edit Environment Variable window, click on the "New" button and add the path to the
folder where the compiled binary is located (e.g., C: \path\to\MPM-Geomechanics\build\CMake\build\Re

e Click "OK" to close all windows.

For Linux, you can add the following line to your ~/.bashrc or ~/.bash_profile file:

export PATH=$PATH:/path/to/MPM-Geomechanics/build/CMake/build

For both Windows and Linux, after adding the path, you can open a new terminal and run
the program from any location by simply typing ‘MPM-Geomechanics® followed by the input file
name.

12

19 Testing Compilation and Benchmarking

In order to compile the testing and benchmarking executables, please follow the instructions
below.

19.1 How to Compile

Prior to proceeding with these instructions, please consult required programs in manual.
The tests use **GoogleTest**. It is necessary to import this library by cloning the official
repository into the folder ‘/external’. Each developer must clone this repository independently.

cd external
git clone https://github.com/google/googletest.git

¢

The simplest way to compile on Windows and Linux is by using the ‘bash‘ file at ‘/build/qa
with ‘MSYS2 MINGW64¢ console line, simply execute the following command in the directory
‘MPM-Geomechanics/build /qa‘:

./cmake-build.bash

Alternatively, you can use the following commands:

cmake -G "Unix Makefiles" -B build
cmake -G "Unix Makefiles" -B build
cmake —--build build

These commands will generate two executables: ‘MPM-Geomechanics-tests’ and ‘MPM-
Geomechanics-benchmark:.

- ‘MPM-Geomechanics-tests‘: Run testing using GoogleTest. All files ending with “test.cpp
are testing files, you can find them in the directory ‘qa/tests".

- ‘MPM-Geomechanics-benchmark‘: Run benchmark using GoogleTest. All files ending with
‘benchmark.cpp‘ are performance files. You can find them in the directory ‘qa/benchmark".

¢

19.2 How does benchmarking work?

If you are using Windows OS, make sure to use the MINGW64 command-line console.

19.3 Executable MPM-Geomechanics-benchmark

To run the benchmark correctly, a JSON file named benchmark-configuration. json is required.
This file allows the user to specify values for each test. If the file does not exist or a value is
missing, a default value will be used.
The executable MPM-Geomechanics-benchmark allows the following command-line arguments:
<directory>: Specifies which file should be used to run the benchmark. If no file is specified,
the program will use benchmark-configuration. json located in the same directory as the
executable. Example: MPM-Geomechanics-benchmark configuration-file.json
The executable MPM-Geomechanics-benchmark allows the following command-line flags:
-log: Shows more information about missing keys in the benchmark-configuration. json

file

19.4 Script (executable): start-multi-benchmark.py

The performance test can also be executed using the ‘start-multi-benchmark.py‘ script, which
allows running benchmarks with one or more executables downloaded as artifacts from GitHub
and stores the log results in separate folders. Each executable is automatically downloaded from
GitHub as an artifact, using an ID specified in start-multi-benchmark-configuration. json.

13

Additionally, the benchmark configuration (number of martial points and number of threads)
can be defined in the same file.
Example of a start-multi-benchmark-configuration. json file:

© 0 N O«

{
"executables": {
"win_benchmark_executable": "MPM-Geomechanics-benchmark.exe", ->
An executable located at build/qa/MPM-Geomechanics-benchmark.
exe
"win_github_id": "17847226555" -> An artifact ID that represent
it. can check out if it exists via gh run view <ID>
},
"parameters": {
"particles": [15000, 25000, 50000], -> material point to test
"threads": [1, 5, 10] -> number of threads to test
}
}

This setup will run 3x3 (particles x threads) totaling 18 tests (3x3x2). The executable
start-multi-benchmark.py allows the following command-line flags:

o --clear: Removes the **benchmark folder** (if it exists) before executing the performance
tests.

e ——cache: Uses the previously created cache instead of the
start-multi-benchmark-configuration. json file.

14

20 Verification Problems

Verification problems are designed to verify and to show some new program functionality.

20.1 Boussinesq’s Problem
Introduction

In Geomechanics, the Boussinesq’s problem refers to the point load acting on a surface of an
elastic half-space. The boundary conditions for this problem are:

e The load P is applied only at one point, at the origin.
e The load is zero at any other point.

e For any point infinitely distant from the origin, the displacements must all vanish.

‘_)_x

v
7

Figure 3: Boussinesq’s problem.

Analytical Solution

The analytical solution of the vertical displacement field is:

P 22
uy(x,y,2) = InCd (2(1 -v)+ dg)

where G = is the shear modulus of the elastic material, v is the Poisson ratio, and

E
2(14+v)
d = /2% + y% + 22 is the total distance from the load to the point.
MPM Model and Result Comparison

To model the displacement field generated by the point load, we create an elastic body with
dimensions I, = [, = [, = 1 m, using the keyword "cuboid" with Point 1 at (0,0,0) and Point 2
at (1,1,1).

For the elastic parameters:

E =200 x 10Pa, p=1500kg/m> v =025

15

© 0 N9 O s W N

WONONNNNNNNNN E R e = = e e
S © W N O Ok W N O © Nk W N = O

The computational mesh has cell dimensions Az = Ay = Az = 0.1m. A nodal load of
magnitude 1 is applied in the vertical direction at the midpoint of the upper surface. The
plane Z,, is free, while all other planes are sliding (only tangential displacements allowed).
Dynamic relaxation is used to reach a static solution, through the keyword "damping" with type
"kinetic".

Input File

{

"body": {

"elastic-cuboid-body": {
"type":"cuboid",
"id":1,
"point_p1":[0.0,0.0,0],
"point_p2":[1,1,1],
"material_id":1

}

3,

"materials": {

"material-1": {
"type":"elastic",
"id":1,
"young":200e6,
"density":1500,
"poisson":0.25

}

3,

"mesh": {
"cells_dimension":[0.1,0.1,0.1],
"cells_number":[10,10,10],
"origin":[0.0,0.0,0.0],
"boundary_conditions": {"plane_Zn":"free"}

3,

"time":0.025,

"time_step_multiplier":0.3,

"nodal_point_load": [[[0.5, 0.5, 1.0], [0.0, 0.0, -1.0]111,

"damping": {"type":"kinetic" }

}

The MPM numerical results show good agreement with the analytical solution, with small
deviations due to discretization and the representation of the domain by particles with finite
volume. Errors decrease with mesh refinement.

16

Displacement (m)

Boussinesq

Displacements in vertical planes

o
-5e-9- -5e-9
-le-8 -le-8

1508 E.15e8
208 E 2e-8

25e-8 § 2568
3.8 -UzMPV-T 8

381" Uzmpm2 g -3e-8

-3.50-8/--UzMPM-3
g UEB] -3.50-8

o8| —Uz-Bsq-2

_4.50.8/=Y2 853 i -de-8.

0 01 02 03 04 05 06 07 08 09 1 4508
2(m) 9]

42608

Displacements in horizontal planes

01 02 03 04 05 06 07
2(m)

Figure 4: Comparison between analytical and MPM results.

17

© 0w N9 O s W N =

=
= O

Figure 5: Geometry of the elastic body.

20.2 Base Acceleration Example
Introduction

In this example we model the motion of an elastic body subjected to a dynamic boundary
condition. The body is a cuboid with dimensions I, = [, = 0.3m and [, = 0.8 m, with lower
coordinate point py, = (0.4,0.4,0.0) m.

The base acceleration is defined as:

i = A2mf cos(2mft + «)
The total simulation time is 7' = 2, with a time step At = 10~%s. Material properties:

p=2500kg/m®, E=100x10°Pa, v =025

MPM Model

The MPM model consists of uniformly distributed particles inside the body, created with the
keywords "body" and "cuboid". The mesh dimensions are Az = Ay = Az = 0.1 m, and it covers
the full expected displacement range of the body. The mesh uses n, = 12,n, = 12,n, = 15.

Input File
{
"stress_scheme_update":"USL",
"shape_function":"GIMP",
"time":10,

"time_step":0.0005,
"gravity":[0.0,0.0,0.0],
"n_threads":1,
"damping": {
"type":"local",
"value":0.0

3,

18

12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

[N S

"results": {
"print":100,

"fields":["id","displacement","velocity","material","active","body

"]

},

"n_phases":1,

"mesh": {
"cells_dimension":[0.1,0.1,0.1],
"cells _number":[10,10,15],
"origin":[0,0,0]

},

"earthquake": {
"active": true,
"file": "base_acceleration.csv",
"header": true

},

"material": {

"elastic_1": {
"type":"elastic",
"id":1,
"young":10e6,
"density":2500,
"poisson":0.25

}
3,
"bOdy"Z {
"columns_1": {
"type":"cuboid",
"id":1,
"point_p1":[0.2,0.2,0],
"point_p2":[0.5,0.5,1.0],
"material_id":1
}

Earthquake Block Parameters

"earthquake": {

"active": true,
"file": "base_acceleration.csv",
"header": true

}

Where:

o active: Enables or disables seismic loading.

o file: Path to the CSV file containing time, acceleration_ x, acceleration_y, and accelera-

tion_ z.
¢ header: True if the CSV has a header row.

Example of the first lines of the record:

t,ax,ay,az

0.0,-1.8849555921538759,-0.9424777960769379,-0.0
5e-05,-1.8849554991350466,-0.9424777844495842,-0.0

19

4
5

0.0001,-1.884955220078568,-0.9424777495675233,-0.0
0.00015000000000000001,-1.8849547549844674,-0.9424776914307561,-0.0

Post-processing (results and visualizations)

Particle results are found in the /particle folder and grid results in the /grid folder located
inside the current working directory. Particle results(particle_1.vtu, particle_2.vtu, ...,
particle_41.vtu) are referenced in particleTimeSerie.pvd, which can be opened in ParaView:
File - Open - particleTimeSerie.pvdThe mesh can beloaded withFile - Open - eulerianGrid.vtu

Figure 6: Particles and mesh of the analyzed case.

Verification of Dynamic Boundary Condition

The velocity from the analytical input function
= Asin(2r ft + «)

was compared with the particle velocity at the base of the model. The results show excellent
agreement between analytical and MPM-calculated velocities.

20

0.44
0.35
0.3
0.25
0.2
0.15

QD
& =

Velocity (m/s)
b O
—~ %o

-0.15{
-0.21
-0.25{
-0.3

—\Vx-Input-Record
Vy-Input-Record

= Vx-MPM

« Vy-MPM

0.35.
04 0
0 02 04 06 08 1 12 14 16 18 2
Time (s)

Figure 7: Verification of velocities obtained with MPM simulation.

21

	Introduction to the Material Point Method (MPM)
	MPM Formulation
	Explicit MPM integration
	Central difference Method

	Numerical implementation of central difference method
	Stability Requirement
	 Numerical damping
	 Local damping
	Quasi-static solution with local damping
	Explicit algorithm
	Project data structure
	Build commands
	Instruction commands using Linux/WSL or MSYS2 MINGW64 console line
	Compilation in Windows
	 Compiling on Linux

	Visual Studio Solution
	 Make Compilation
	Program features
	Compiled binaries
	Required Programs
	Required Programs - Windows
	Required Programs - Linux

	Code documentation
	Execution
	Testing Compilation and Benchmarking
	How to Compile
	How does benchmarking work?
	Executable MPM-Geomechanics-benchmark
	Script (executable): start-multi-benchmark.py

	Verification Problems
	Boussinesq's Problem
	Base Acceleration Example

