
MPM-Geomechanics Manual
An open-source Material Point Method code for geomechanics.

Prof. Dr. Fabricio Fernández
MPM-Geomechanics Development Team

December 30, 2025

1 Introduction to the Material Point Method (MPM)
The Material Point Method is an hybrid Lagrangian-Eulerian numerical method, that allows
for simulating continuum mechanics processes involving large deformations and displacements
without issues related to computational mesh distortion. In MPM, the material domain to be
simulated is discretized into a set of material points that can move freely within a computational
mesh, where the equations of motion are solved. The material points store all variables of interest
during the simulation, such as stress, pore pressure, temperature, etc., giving the method its
Lagrangian characteristic.

Figure 1: General MPM approach. Solid and space discretization with Lagrangian material
points and structured Eulerian mesh.

In an MPM computational cycle, all variables stored in the material points are computed at
the computational mesh nodes using interpolation functions, and then the equation of motion is
solved at the nodes. The nodal solution obtained is interpolated back to the particles, whose
positions are updated, and all nodal variables are discarded. This method, enables the numerical
solution of the motion equation in continuum mechanics by using the nodes of an Eulerian mesh
for integration and Lagrangian material points to transfer and store the properties of the medium.

1

Figure 2: MPM computational cycle

2 MPM Formulation
The material point method formulation is based on the continuum mechanics motion equation in
3D:

∂σij

∂xj
+ ρbi = ρai (1)

The internal forces are related with the σij , the Cauchy stress tensor, ρ is the mass density,
bi is a body force and ai is the acceleration.

The equation 1 is presented here in tensor notation, but, vector and matrix can be equally
used. The discrete form of the motion equation can be obtained using the weak form of this
partial differential equation. The weak form is obtained by multiplying the motion equation by
arbitrary weighting functions and integrating this product over the domain. In this procedure,
the integration by parts reduces the order the stress tensor and introduces the natural boundary
conditions:

−
∫

Ω
σijδui,jdV +

∫
Γ

tiδuidA +
∫

Ω
ρbiδuidV =

∫
Ω

ρaiδuidV (2)

Here δui are arbitrary displacements functions, whose value in the boundary are δui|Γ = 0
and ti is an external traction acting on the boundary Γ.

In the MPM context any field or space property f(xi) can approximated using the value
stored in the particle fp:

f(xi) =
∑

fpχp(xi)

where χp is the particle characteristic function that defines the volume occupied by the material
point:

Vp =
∫

Ωp∩Ω
χp(xi)dV

In consequent, density, acceleration and stress fields can be approximated by the values stored
in particles:

ρ(xi) =
∑

p

mp

Vip
χp(xi)ρ(xi)ai(xi) =

∑
p

˙pip

Vp
χp(xi)σij(xi) =

∑
p

σijpχp(xi)

2

where ˙pip = mpv̇ip = mpaSip = fip is the momentum variation in time that is equal to the
total force, regarding the second Newton’s law.

Replacing these fields in the weak form of the motion equation we have:

−
∑

p

∫
Ωp∩Ω

σijpχpδui,jdV +
∫

Γ
tiδuidA +

∑
p

∫
Ωp∩Ω

mp

Vp
bipχpδuidV =

∑
p

∫
Ωp∩Ω

ṗp

Vp
χpaidV

In the generalized interpolation material point method (GIMP), the resolution of this equation
is carried out using a Petrov–Galerkin scheme where the characteristic functions χp(xi) are the
trial functions and the nodal interpolation functions NI(xi) are the test functions.To arrive at
this scheme, the virtual displacements are expressed using nodal interpolation functions:

δui =
∑

I

NIpδuiI

The trial and test functions are such that:∑
I

NI(xi) = 1
∑

p

χp(xi) = 1

The resulting discrete form of the motion equation then is:

f int
iI + fext

iI = ṗiI

where

piI =
∑

p

SIppIp

is the nodal momentum,

f int
iI = −

∑
p

σijpSIp,jVp

is the nodal internal force, and

fext
iI =

∑
p

mpSIpbip +
∫

Γ
tiNI(xi)dA

is the external force at node I.
The function SIp and its gradients SIp,j are the weighting functions of node I evaluated at

the position of particle p.
The GIMP shape functions are defined by

SIp = 1
Vp

∫
Ωp∩Ω

χp(xi)NI(xi)dV

and

SIp,j = 1
Vp

∫
Ωp∩Ω

χp(xi)NI,j(xi)dV

These two functions are also a partition of the unity ∑I SIp = 1.
The weighting function need to be integrated over the particle domain by choosing different

characteristic functions and interpolation functions in a Petrov–Galerkin scheme. In the con-
tiguous particle GIMP (cpGIMP) the characteristic function in defined as step function and the
interpolation function is defined as linear function:

3

χp(x) =
{

1, x ∈ Ωp,

0, x /∈ Ωp.

NI(x) =


0, |x− xI | ≥ L,

1 + x− xI

L
, −L < x− xI ≤ 0,

1− x− xI

L
, 0 < x− xI < L.

Where the integration is performed analytically within the particle domain.

SIp =



0 |ξ| ≥ L + lp
(L + lp + ξ)2 /4Llp −L− lp < ξ ≤ −L + lp
1 + ξ/L −L + lp < ξ ≤ −lp

1−
(
ξ2 + l2p

)
/2Llp −lp < ξ ≤ lp

1− ξ/L lp < ξ ≤ L− lp
(L + lp − ξ)2 /4Llp L− lp < ξ ≤ L + lp

and

∇SIp =



0 |xp − xI | ⩾ L + lp,
L+lp+(xp−xI)

2Llp
−L− lp < xp − xI ⩽ −L + lp,

1
L −L + lp < xp − xI ⩽ −lp,

−xp−xI

Llp
−lp < xp − xI ⩽ lp,

− 1
L lp < xp − xI ⩽ L− lp,

−L+lp−(xp−xI)
2Llp

L− lp < xp − xI ⩽ L + lp.

In which 2lp is the particle domain, L is the mesh size in 1D, and ξ is the relative particle
position to node. Weighting functions in 3D are obtained by the product of three one-dimensional
weighting functions:

SIp(xip) = SIp(ξ)SIp(η)SIp(ζ)

where ξ = xp − xI , η = yp − yI and ζ = zp − zI .

3 Explicit MPM integration
The discrete form of the motion equation needs to be integrated in time for obtaining the solution
in time tn+1. The displacement, the velocity and the acceleration at time t0, t1, t2, ..., tn are
knows, and the values at time tn+1 are required, namely the solution of the problem. The time
integration can be done by explicit and implicit methods. In explicit method, the solution tn+1

is obtained only with the current information f(tn, ..., t0). In implicit method the solution needs
to solve a system due the solution is in function of the form f(tn+1, ..., t0).

3.1 Central difference Method

In central difference method, the velocity at tn+1/2 can be approximated as:

u̇n+1/2 = (un+1 − un)∆t

and, the acceleration in tn can be approximated as:

ün = (u̇n+1/2 − u̇n−1/2)∆t

4

and therefore, the required displacement at tn+1 can be calculated as: un+1 = un + u̇n+1/2∆t,
where the velocity is

u̇n+1/2 = u̇n−1/2 + ün∆t

.
The motion equation in time tn is m ün = fn, therefore the acceleration in time tn is

ün = fn/m. Using this acceleration equation in the u̇n+1/2 we have the velocity u̇n+1/2:

u̇n+1/2 = u̇n−1/2 + fn/m ∆t

4 Numerical implementation of central difference method
For one ∆t, the updated position can be obtained as:

Algorithm 1 Explicit time integration
1: Compute forces fn

2: Compute acceleration ün = fn/m
3: Update velocity u̇n+1/2 = u̇n−1/2 + ün∆t
4: Update position un+1 = un + u̇n+1/2∆t
5: n← n + 1

5 Stability Requirement
The central difference method is explicit here and conditionally stable, so the time step must be
less that a certain value for avoiding error amplification. For linear systems this critical time step
value depends on the natural period of the system. For undamped linear systems the critical
time step is: ∆tcr = Tn/π, where Tn is the smallest natural period of the system. For finite
element method, the critical time step of the central difference method can be expressed as:

∆tcr = mine(le/c)

Where le is the characteristic length of the element and c is the sound speed. This time step
restriction implies that time step has to be limited such that a disturbance, a mechanical wave,
can travel across the smallest characteristic element length withing a single time step.

This condition is known as CFL condition, or Courant-Friedrichs-Lewy condition. For linear
elastic material the sound speed (compression P wave) is:

c =
√

E(1− ν)
(1 + ν)(1− 2ν)ρ

In the MPM, the particles can has velocities in any time step, so the critical time speed can
be written with this velocity plus:

∆tcr = le/maxp(cp + |vp|)

In a structured regular mesh, le is the grid cell dimension. And cp is the sound speed
calculated with the material parameters stored in particles.

5

6 Numerical damping
Real materials dissipates energy during movement. Temperature ans plastic deformation are
common sources of energy dissipation. In numerical analysis numerical damping can be used for
obtaining the quasi-static condition of the dynamic system.

7 Local damping
The numerical damping is a technique for getting a stationary solution of the dynamic system.
In the MPM-Geomechanics simulator we have two type of numerical damping: the local (viscous)
and the kinetic (dynamic relaxation) damping.

8 Quasi-static solution with local damping
The local damping is used to get a quasi-static solution of the dynamic system using a viscous
nodal force. In each time step, a viscous force is applied in each node, whose magnitude is
proportional and opposite to the nodal velocity.

fdnplocal
iI = −α|funb

iI |v̂iI

, where the unbalanced nodal force is:

funb
iI = f int

iI + fext
iI

Therefore, the resulting discrete form of the motion equation with viscous nodal damping is:

ṗiI = f int
iI + fext

iI + fdnplocal
iI

6

9 Explicit algorithm

Algorithm 2 Explicit MPM integration scheme
1: Compute nodal mass: mk

I = ∑np

p=1 mpNk
Ip

2: Compute nodal momentum: p
k−1/2
iI = ∑np

p=1 mpv
k−1/2
ip Nk

Ip

3: Update seismic velocities from record (if required):
a

s, k− 1
2

i = as, record
i

v
s, k+ 1

2
i = ∑l=1− 1

2
l=0 vs, l

i + as, record
i ∆t

4: Impose nodal momentum boundary conditions: p
k−1/2
iI = 0 (fixed condition)

5: Compute internal forces: f int
iI

k = −∑np

p=1 σp
ij

kSk
Ip,jVp

6: Compute external forces: fext
iI

k = ∑np

p=1 mpbiS
k
Ip +

∫
Γ tiNI(xi)dA

7: Compute nodal unbalanced forces: funb
iI

k = f int
iI

k + fext
iI

k

8: Compute damping forces (if required): fdnp
iI

k = −α|funb
iI

k|v̂k−1/2
iI

9: Compute total nodal forces: f tot
iI

k = funb
iI

k + fdnp
iI

k

10: Impose nodal force boundary conditions: f tot
iI

k = 0 (fixed condition)
11: Update nodal momenta: p

k+ 1
2

iI = p
k−1/2
iI + f tot

iI
k∆t

12: Update particle velocities: v
k+ 1

2
ip = v

k−1/2
ip +∑nn

I=1
f tot

iI
k

mk
I

Nk
Ip∆t

13: Seismic nodal velocity: v
k+ 1

2
iI = v

s, k+ 1
2

i

14: Contact correction (if required): v
k+ 1

2
ip = STLContactCorrection(vk+ 1

2
ip)

15: Update particle positions: xk+1
ip = xk

ip +∑nn
I=1 v

k+ 1
2

iI Nk
Ip∆t

16: For MUSL scheme, recalculate nodal momentum: p
k+1/2
iI = ∑np

p=1 mpv
k+1/2
ip Nk

Ip

17: Impose nodal momentum boundary conditions: p
k+1/2
iI = 0 (fixed condition)

18: Calculate nodal velocities: v
k+1/2
iI = p

k+1/2
iI /mk

I

19: Compute particle strain increment: ∆εp
ij

k+1/2 = 1
2

(
Nk

p,jv
k−1/2
i + Nk

p,iv
k+1/2
j

)
∆t

20: Compute vorticity increment: ∆ωp
ij

k+1/2 = 1
2

(
Nk

p,jv
k+1/2
i −Nk

p,iv
k+1/2
j

)
∆t

21: Update particle density: ρk+1
p = ρk

p/(1 + tr(∆ε
k−1/2
ijp))

22: Update particle stress: σp
ij

k+1 = StressUpdate(σp
ij

k, ∆εp
ij

k−1/2, ∆ωp
ij

k−1/2)
23: k ← k + 1

7

10 Project data structure
The directories with files and folders in this project are organized as follows:

• src/ build/ qa/ external/ and inc/ sources, builds qa(tests and benchmarking), google-
test folder and C++ headers files

• manual/ docs/ program manual and documentation for doxygen

• tests/ simulation results of analytical and numerical tests

• examples/ application examples

11 Build commands
The following instructions outline the steps required to build the MPM-Geomechanics project.

11.1 Instruction commands using Linux/WSL or MSYS2 MINGW64 console
line

After cloning the repository, navigate to the project directory and execute the following commands:
1 cd build/CMake
2 cmake -S . -B build -DCMAKE_BUILD_TYPE = Release
3 cmake --build build -j

11.2 Compilation in Windows

Prior to proceeding with these instructions, please consult the windows required programs section
in this manual.

The simplest way to compile on windows is by using the ‘.bash‘ file at ‘/build/CMake‘ with
‘MSYS2 MINGW64‘ console line, just execute:

1 cd project - directory /build/CMake
2 ./ cmake -build.bash

Alternatively, you can use the following commands:
1 cd project - directory /build/CMake
2 cmake -G "Unix Makefiles " -B build
3 cmake --build build

11.3 Compiling on Linux

Prior to proceeding please consult the Linux Required Programs section in this manual.
The simplest way to compile on Linux is by using the ‘.bash‘ file at ‘/build/CMake‘, just

execute:
1 cd build/CMake
2 ./ cmake -build.bash

Alternatively, you can use the following commands:
1 cd build/CMake
2 cmake -G "Unix Makefiles " -B build
3 cmake --build build

8

12 Visual Studio Solution
For compiling the code in windows you can use the Visual Studio solution file ‘/build/MPM-
Geomechanics.sln‘, and build it by pressing ‘Ctr+B‘. Alternatively you can compile it by using
command in a *Developer Command Prompt*:

1 msbuild MPM - Geomechanics .sln -p: Configuration = Release

13 Make Compilation
For compile the code in a linux environment, execute the makefile inside the make folder:
MPM-Geomechanics\build\make\makefile.

14 Program features
The MPM-Geomechanics program is an open source implementation of the Material Point
Method (MPM) for geomechanics applications. It is designed to simulate the behavior of soils
and rock under various loading conditions, including static and dynamic loads.

The main features of the program are:

• three dimensional formulation

• dynamic formulation

• shared memory parallelization using OpenMP

• body-based (pre-defined bodies, particles-list)

• constitutive models for soil and rock materials

• softening/hardening models to represent weakness during large deformations

• frictional contact algorithm using STL surfaces

• coupled fluid-mechanical formulation (*under development*)

• seismic boundary conditions

15 Compiled binaries
The recommended way to get the compiled binaries is by downloading the artifacts from the
latest GitHub Actions workflow run.

• go to the [Actions page](https://github.com/fabricix/MPM-Geomechanics/actions).

• elect the latest run of the **MSBuild** workflow for Window, or **CI** for Linux.

• at the bottom, you will find the available artifacts under the **Artifacts** section.

• download the ‘compiled-binaries‘ artifact to get the compiled code.

16 Required Programs
The following instructions outline the steps required to install all necessary programs to build
the MPM-Geomechanics project and execute its test suite.

9

16.1 Required Programs - Windows

For Windows installation, the required programs can be installed using Winget and MSYS2.
The following table summarizes the required programs, their installation methods, and the
corresponding commands.

Program Installation Command
Winget Microsoft’s official website Native of Windows
Git via Winget winget install -e –id Git.Git

-e –source winget
MSYS2 via Winget winget install -e –id

MSYS2.MSYS2 –source winget
GitHub CLI via MSYS2 MINGW64 pacman -S

mingw-w64-x86_64-github-cli
Python via MSYS2 MINGW64 pacman -S

mingw-w64-x86_64-python
CMake via MSYS2 MINGW64 pacman -S

mingw-w64-x86_64-cmake
GCC via MSYS2 MINGW64 pacman -S mingw-w64-x86_64-gcc
G++ via MSYS2 MINGW64 pacman -S mingw-w64-x86_64-gcc
Make via MSYS2 MINGW64 pacman -S make

Table 1: Programs required for Windows installation.

Pre-requisite: Verify Winget installation

Make sure you have Winget installed. You can verify this by running winget –version.
If you don’t have Winget installed, you can get it from Microsoft’s official website.

Step 1: Install Git, GitHub, and MSYS2

Run the following commands:
1 winget install -e --id Git.Git -e --source winget
2 winget install -e --id MSYS2.MSYS2 --source winget

Step 2: Install required packages in MSYS2 MINGW64

1 pacman -S mingw -w64 -x86_64 -github -cli
2 pacman -S mingw -w64 -x86_64 - python
3 pacman -S mingw -w64 -x86_64 -cmake
4 pacman -S mingw -w64 -x86_64 -gcc
5 pacman -S make

Step 3: Verify the installations

1 git --version
2 gh --version
3 python --version
4 cmake --version
5 make --version
6 gcc --version
7 g++ --version

10

https://learn.microsoft.com/en-us/windows/package-manager/winget/
https://learn.microsoft.com/en-us/windows/package-manager/winget/

16.2 Required Programs - Linux

For Linux installation, the required programs can be installed using the apt package manager.
The following table summarizes the required programs, their installation methods, and the
corresponding commands.

Program Installation Command
Git via apt sudo apt install git
GitHub CLI via apt sudo apt install gh
Python via apt sudo apt install python3 python3-pip
CMake via apt sudo apt install cmake
GCC via apt sudo apt install build-essential
G++ via apt sudo apt install build-essential
Make via apt sudo apt install build-essential

Table 2: Programs required for Linux installation.

Step 1: Install all packages via apt

Listing 1: Installing required packages using apt
1 sudo apt install git
2 sudo apt install gh
3 sudo apt install python3 python3 -pip
4 sudo apt install cmake
5 sudo apt install build - essential

Step 2: Verify the installations

1 git --version
2 gh --version
3 python3 --version
4 cmake --version
5 make --version
6 gcc --version
7 g++ --version

17 Code documentation
Code documentation is generated using Doxygen documentation generator. To generate the
documentation run the following command:

1 doxygen Doxyfile

The HTML generated documentation is located in ‘/docs/index.html‘.

18 Execution
In order to run simulations in several terminal, you can add the compiled code in the system
‘PATH‘.

For Windows, you can follow these steps:

• Open the Start Search, type in "env", and select "Edit the system environment variables"

11

• In the System Properties window, click on the "Environment Variables..." button.

• In the Environment Variables window, under the "System variables" section, find and select
the "Path" variable, then click on the "Edit..." button.

• In the Edit Environment Variable window, click on the "New" button and add the path to the
folder where the compiled binary is located (e.g., C:\path\to\MPM-Geomechanics\build\CMake\build\Release).

• Click "OK" to close all windows.

For Linux, you can add the following line to your ~/.bashrc or ~/.bash_profile file:
1 export PATH=$PATH :/ path/to/MPM - Geomechanics /build/CMake/build

For both Windows and Linux, after adding the path, you can open a new terminal and run
the program from any location by simply typing ‘MPM-Geomechanics‘ followed by the input file
name.

12

19 Testing Compilation and Benchmarking
In order to compile the testing and benchmarking executables, please follow the instructions
below.

19.1 How to Compile

Prior to proceeding with these instructions, please consult required programs in manual.
The tests use **GoogleTest**. It is necessary to import this library by cloning the official

repository into the folder ‘/external‘. Each developer must clone this repository independently.
1 cd external
2 git clone https :// github .com/ google / googletest .git

The simplest way to compile on Windows and Linux is by using the ‘.bash‘ file at ‘/build/qa‘
with ‘MSYS2 MINGW64‘ console line, simply execute the following command in the directory
‘MPM-Geomechanics/build/qa‘:

1 ./ cmake -build.bash

Alternatively, you can use the following commands:
1 cmake -G "Unix Makefiles " -B build
2 cmake -G "Unix Makefiles " -B build
3 cmake --build build

These commands will generate two executables: ‘MPM-Geomechanics-tests‘ and ‘MPM-
Geomechanics-benchmark‘.

- ‘MPM-Geomechanics-tests‘: Run testing using GoogleTest. All files ending with ‘.test.cpp‘
are testing files, you can find them in the directory ‘qa/tests‘.

- ‘MPM-Geomechanics-benchmark‘: Run benchmark using GoogleTest. All files ending with
‘.benchmark.cpp‘ are performance files. You can find them in the directory ‘qa/benchmark‘.

19.2 How does benchmarking work?

If you are using Windows OS, make sure to use the MINGW64 command-line console.

19.3 Executable MPM-Geomechanics-benchmark

To run the benchmark correctly, a JSON file named benchmark-configuration.json is required.
This file allows the user to specify values for each test. If the file does not exist or a value is
missing, a default value will be used.

The executable MPM-Geomechanics-benchmark allows the following command-line arguments:
<directory>: Specifies which file should be used to run the benchmark. If no file is specified,

the program will use benchmark-configuration.json located in the same directory as the
executable. Example: MPM-Geomechanics-benchmark configuration-file.json

The executable MPM-Geomechanics-benchmark allows the following command-line flags:
–log: Shows more information about missing keys in the benchmark-configuration.json

file

19.4 Script (executable): start-multi-benchmark.py

The performance test can also be executed using the ‘start-multi-benchmark.py‘ script, which
allows running benchmarks with one or more executables downloaded as artifacts from GitHub
and stores the log results in separate folders. Each executable is automatically downloaded from
GitHub as an artifact, using an ID specified in start-multi-benchmark-configuration.json.

13

Additionally, the benchmark configuration (number of martial points and number of threads)
can be defined in the same file.

Example of a start-multi-benchmark-configuration.json file:
1 {
2 " executables ": {
3 " win_benchmark_executable ": "MPM - Geomechanics - benchmark .exe", ->

An executable located at build/qa/MPM - Geomechanics - benchmark .
exe

4 " win_github_id ": " 17847226555 " -> An artifact ID that represent
it. can check out if it exists via gh run view <ID >

5 },
6 " parameters ": {
7 " particles ": [15000 , 25000 , 50000] , -> material point to test
8 " threads ": [1, 5, 10] -> number of threads to test
9 }

10 }

This setup will run 3x3 (particles x threads) totaling 18 tests (3x3x2). The executable
start-multi-benchmark.py allows the following command-line flags:

• --clear: Removes the **benchmark folder** (if it exists) before executing the performance
tests.

• --cache: Uses the previously created cache instead of the
start-multi-benchmark-configuration.json file.

14

20 Verification Problems
Verification problems are designed to verify and to show some new program functionality.

20.1 Boussinesq’s Problem

Introduction

In Geomechanics, the Boussinesq’s problem refers to the point load acting on a surface of an
elastic half-space. The boundary conditions for this problem are:

• The load P is applied only at one point, at the origin.

• The load is zero at any other point.

• For any point infinitely distant from the origin, the displacements must all vanish.

Figure 3: Boussinesq’s problem.

Analytical Solution

The analytical solution of the vertical displacement field is:

uz(x, y, z) = P

4πGd

(
2(1− ν) + z2

d2

)

where G = E
2(1+ν) is the shear modulus of the elastic material, ν is the Poisson ratio, and

d =
√

x2 + y2 + z2 is the total distance from the load to the point.

MPM Model and Result Comparison

To model the displacement field generated by the point load, we create an elastic body with
dimensions lx = ly = lz = 1 m, using the keyword "cuboid" with Point 1 at (0,0,0) and Point 2
at (1,1,1).

For the elastic parameters:

E = 200× 106 Pa, ρ = 1500 kg/m3, ν = 0.25

15

The computational mesh has cell dimensions ∆x = ∆y = ∆z = 0.1 m. A nodal load of
magnitude 1 is applied in the vertical direction at the midpoint of the upper surface. The
plane Zn is free, while all other planes are sliding (only tangential displacements allowed).
Dynamic relaxation is used to reach a static solution, through the keyword "damping" with type
"kinetic".

Input File

1 {
2 "body ": {
3 "elastic -cuboid -body ": {
4 "type ":" cuboid ",
5 "id":1,
6 " point_p1 ":[0.0 ,0.0 ,0] ,
7 " point_p2 ":[1 ,1 ,1] ,
8 " material_id ":1
9 }

10 },
11 " materials ": {
12 "material -1": {
13 "type ":" elastic ",
14 "id":1,
15 "young ":200e6 ,
16 " density ":1500 ,
17 " poisson ":0.25
18 }
19 },
20 "mesh ": {
21 " cells_dimension ":[0.1 ,0.1 ,0.1] ,
22 " cells_number ":[10 ,10 ,10] ,
23 " origin ":[0.0 ,0.0 ,0.0] ,
24 " boundary_conditions ": {" plane_Zn ":" free "}
25 },
26 "time ":0.025 ,
27 " time_step_multiplier ":0.3 ,
28 " nodal_point_load ": [[[0.5 , 0.5, 1.0] , [0.0 , 0.0, -1.0]]] ,
29 " damping ": {" type ":" kinetic " }
30 }

The MPM numerical results show good agreement with the analytical solution, with small
deviations due to discretization and the representation of the domain by particles with finite
volume. Errors decrease with mesh refinement.

16

Figure 4: Comparison between analytical and MPM results.

17

Figure 5: Geometry of the elastic body.

20.2 Base Acceleration Example

Introduction

In this example we model the motion of an elastic body subjected to a dynamic boundary
condition. The body is a cuboid with dimensions lx = ly = 0.3 m and lz = 0.8 m, with lower
coordinate point pmin = (0.4, 0.4, 0.0) m.

The base acceleration is defined as:

ü = A 2πf cos(2πft + α)

The total simulation time is T = 2 s, with a time step ∆t = 10−4 s. Material properties:

ρ = 2500 kg/m3, E = 100× 106 Pa, ν = 0.25

MPM Model

The MPM model consists of uniformly distributed particles inside the body, created with the
keywords "body" and "cuboid". The mesh dimensions are ∆x = ∆y = ∆z = 0.1 m, and it covers
the full expected displacement range of the body. The mesh uses nx = 12, ny = 12, nz = 15.

Input File

1 {
2 " stress_scheme_update ":" USL",
3 " shape_function ":" GIMP",
4 "time ":10 ,
5 " time_step ":0.0005 ,
6 " gravity ":[0.0 ,0.0 ,0.0] ,
7 " n_threads ":1,
8 " damping ": {
9 "type ":" local",

10 "value ":0.0
11 },

18

12 " results ": {
13 "print ":100 ,
14 " fields ":[" id"," displacement "," velocity "," material "," active "," body

"]
15 },
16 " n_phases ":1,
17 "mesh ": {
18 " cells_dimension ":[0.1 ,0.1 ,0.1] ,
19 " cells_number ":[10 ,10 ,15] ,
20 " origin ":[0 ,0 ,0]
21 },
22 " earthquake ": {
23 " active ": true ,
24 "file ": " base_acceleration .csv",
25 " header ": true
26 },
27 " material ": {
28 " elastic_1 ": {
29 "type ":" elastic ",
30 "id":1,
31 "young ":10e6 ,
32 " density ":2500 ,
33 " poisson ":0.25
34 }
35 },
36 "body ": {
37 " columns_1 ": {
38 "type ":" cuboid ",
39 "id":1,
40 " point_p1 ":[0.2 ,0.2 ,0] ,
41 " point_p2 ":[0.5 ,0.5 ,1.0] ,
42 " material_id ":1
43 }
44 }
45 }

Earthquake Block Parameters

1 " earthquake ": {
2 " active ": true ,
3 "file ": " base_acceleration .csv",
4 " header ": true
5 }

Where:

• active: Enables or disables seismic loading.

• file: Path to the CSV file containing time, acceleration_x, acceleration_y, and accelera-
tion_z.

• header: True if the CSV has a header row.

Example of the first lines of the record:
1 t,ax ,ay ,az
2 0.0 , -1.8849555921538759 , -0.9424777960769379 , -0.0
3 5e -05 , -1.8849554991350466 , -0.9424777844495842 , -0.0

19

4 0.0001 , -1.884955220078568 , -0.9424777495675233 , -0.0
5 0.00015000000000000001 , -1.8849547549844674 , -0.9424776914307561 , -0.0
6 ...

Post-processing (results and visualizations)

Particle results are found in the /particle folder and grid results in the /grid folder located
inside the current working directory. Particle results(particle_1.vtu, particle_2.vtu, ...,
particle_41.vtu) are referenced in particleTimeSerie.pvd, which can be opened in ParaView:
File - Open - particleTimeSerie.pvdThe mesh can be loaded with File - Open - eulerianGrid.vtu

Figure 6: Particles and mesh of the analyzed case.

Verification of Dynamic Boundary Condition

The velocity from the analytical input function

u̇ = A sin(2πft + α)

was compared with the particle velocity at the base of the model. The results show excellent
agreement between analytical and MPM-calculated velocities.

20

Figure 7: Verification of velocities obtained with MPM simulation.

21

	Introduction to the Material Point Method (MPM)
	MPM Formulation
	Explicit MPM integration
	Central difference Method

	Numerical implementation of central difference method
	Stability Requirement
	 Numerical damping
	 Local damping
	Quasi-static solution with local damping
	Explicit algorithm
	Project data structure
	Build commands
	Instruction commands using Linux/WSL or MSYS2 MINGW64 console line
	Compilation in Windows
	 Compiling on Linux

	Visual Studio Solution
	 Make Compilation
	Program features
	Compiled binaries
	Required Programs
	Required Programs - Windows
	Required Programs - Linux

	Code documentation
	Execution
	Testing Compilation and Benchmarking
	How to Compile
	How does benchmarking work?
	Executable MPM-Geomechanics-benchmark
	Script (executable): start-multi-benchmark.py

	Verification Problems
	Boussinesq's Problem
	Base Acceleration Example

